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1. Introduction

Integrable structures in a four-dimensional quantum field theory were first shown to arise

in the Regge limit of scattering amplitudes in the planar limit of QCD [1, 2]. In the

leading logarithm approximation the reggeized scattering amplitudes are described by a

non-compact Heisenberg magnet with SL(2) symmetry group. Integrability survives as

the amount of symmetry is increased, because supersymmetric extensions of QCD share

the same non-compact sector of operators with covariant derivatives. In fact integrability

extends to larger sectors of the gauge theory [3], up to the maximally supersymmetric

N = 4 Yang-Mills, which is completely integrable at one-loop [4, 5]. There is much

evidence that integrability holds beyond one-loop in N = 4, and a long-range Bethe ansatz

has in fact been suggested to govern the spectrum of anomalous dimensions of local gauge

invariant composite operators to all order [6]. The proposal for a Bethe ansatz only applies

to asymptotically long single trace operators, and does not cover wrapping interactions,

present beyond a certain order for finite-size operators.

For the non-compact SL(2) sector of the N = 4 theory, containing twist-two operators

of the form

Tr(Ds1ZDs2Z ) , (1.1)

with s1 + s2 = N the total spin, and Z = φ5 + iφ6,
1 the expansion of the asymptotic

Bethe ansatz (ABA) equations completely agrees with the perturbative computation of

1This combination of scalars has a definite R-charge under the SO(6) R-symmetry implying that the

operators of the SL(2)-sector do not mix with other sectors under changes of scale.
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the three-loop anomalous dimension of twist-two operators [7]. However for twist-two

operators wrapping effects are already present beyond third loop,2 and the ABA fails to

reproduce the four-loop prediction for the anomalous dimension obtained from the BFKL

pomeron [8]. The pomeron singularity corresponds to the analytic continuation of the spin

to N = −1. The purpose of this letter is to explore the N = 1 case, which in the spin

chain picture amounts to a single magnon excitation. The note is organized as follows. In

section 2 the anomalous dimension for twist-two operators with spin-one is shown to agree,

up to three loops, with the perturbative expansion of the dispersion relation for planar

N = 4 supersymmetric Yang-Mills. In section 3 the contribution of double logarithms to

the analytic extension to negative spin of the anomalous dimension is shown to correspond

to the anomalous dimension at N = 1, and we conjecture an interpretation for the spin

chain magnon in the BFKL picture. We conclude in section 4 with some discussion on our

results.

2. The single magnon anomalous dimension

In deep inelastic scattering (DIS) processes anomalous dimensions for twist-two operators

control the renormalization group behavior of parton distribution functions under changes

of the photon resolution. Let us denote by Fa(x, Q
2) the number of partons of type a, with

transversal momentum k2 smaller or equal to Q2 and with a fraction x of the longitudinal

momentum of the nucleon. The meaning of Q2 in DIS is the virtuality of the photon,

Q2 = −q2, and x = Q2/s is the Bjorken variable describing the rapidity gap between the

photon and the nucleon. Denoting by Fa(N, Q
2) the Mellin transform,

Fa(N, Q
2) ≡

∫ 1

0
dxxN−1Fa(x, Q

2) , (2.1)

the DGLAP renormalization group equation is given by [9]

∂Fa(N, Q
2)

∂logQ2
= γa,b(N)Fb(N, Q

2) , (2.2)

where γa,b(N) is the DGLAP anomalous dimension matrix, which coincides with the

anomalous dimension of a twist-two operator. Since we will only be interested in scalar

twist-two operators in this note we will write γφ,φ(N) ≡ γ2(N) for brevity, recalling that

the SL(2)-sector operators are closed under operator mixing, justifying the restriction to

the scalar entry. Using conventions such that

g2 =
λ

8π2
, (2.3)

where λ ≡ g2
YM
N is the ’t Hooft coupling constant, the anomalous dimension

γL(N) =

∞
∑

n=1

γL,n(N)g2n (2.4)

2Wrapping is not very transparent for the SL(2)-sector. In certain special cases, however, its operators

can be related by supersymmetry to other sectors where wrapping is manifest, such as the N = 2 Konishi

multiplet which takes the form Tr(ZWZW ) + · · · in the SU(2)-sector.
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is given, up to three-loops, by [7]

γ2,1(N) = 4S1 , (2.5)

γ2,2(N) = −4
(

S3 + S−3 − 2S−2,1 + 2S1(S2 + S−2)
)

, (2.6)

γ2,3(N) = −8
(

2S−3S2 − S5 − 2S−2S3 − 3S−5 + 24S−2,1,1,1 + 6(S−4,1 + S−3,2 + S−2,3)

−12(S−3,1,1 + S−2,1,2 + S−2,2,1) − (S2 + 2S2
1)(3S−3 + S3 − 2S−2,1) (2.7)

−S1(8S−4 + S2
−2 + 4S2S−2 + 2S2

2 + 3S4 − 12S−3,1 − 10S−2,2 + 16S−2,1,1)
)

,

where the harmonic sums are defined through

Sa ≡ Sa(N) =
N
∑

j=1

(sgn(a))j

ja
, (2.8)

Sa1,...,an ≡ Sa1,...,an(N) =

N
∑

j=1

(sgn(a1))
j

ja1
Sa2,...,an(j) . (2.9)

The anomalous dimension for these twist-two operators can also be obtained as the

energy for the proposed long-range SL(2) integrable spin chain with N magnon excitations

through [6]

γ2(N) =

N
∑

i

E(pi) , (2.10)

where the dispersion relation is

E(pi) =

√

1 + 8g2 sin2
(pi

2

)

− 1 , (2.11)

with {pi} the set of magnon momenta solving the Bethe ansatz equations. At one-loop this

spin chain reduces to the length-two SL(2) XXXs=−1/2 Heisenberg chain [5], and the energy

for N magnons can be exactly obtained by solving the corresponding Baxter equation (see

for instance [10]). The anomalous dimension obtained for twist-two scalar operators from

the ABA coincides with equations (2.5)–(2.8). It also provides a four-loop term [8]

γ2,4(N) = 16 (4S−7 + 6S7 + . . .− ζ(3)S1(S3 − S−3 + 2S−2,1)) , (2.12)

where the entire expression is presented in table 1 of reference [8]. In this note we are

concerned with the value of γ2(N) at N = 1. In QCD, the twist-two operators at unit

spin are not renormalized and thus γ(1) = 0. The quark twist-two operator, for example,

is simply the conserved quark current in this case. Furthermore, in N = 4 Yang-Mills, the

natural choice, obtained from the spin chain picture, would also be γ(1) = 0. The reason is

that the periodicity imposed by the trace on gauge operators implies vanishing momentum

on states of the corresponding spin chain. Therefore a single magnon state could only have

zero momentum, and therefore zero energy. However, the true value of γ(1), as given by

the expansions of the anomalous dimension in terms of harmonic sums, turns out to be

rather surprising. Plugging N = 1 into equations (2.5)–(2.8) and (2.12) gives

γ2(1) = 4g2 − 8g4 + 32g6 − 160g8 + O(g10) . (2.13)

– 3 –
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This is precisely what is obtained if one expands the dispersion relation (2.11) for a magnon

of momentum p = π. It would thus seem that γ2(1) does not provide the energy of

a physical, zero-momentum magnon, but rather of some sort of “non-physical” p = π

magnon. Extrapolating to all-loops we may conjecture that

γ2(1) = E (p = π) , (2.14)

where E(p) is given by (2.11). For later use, let us write the expansion coefficients of γ2(1),

at weak-coupling as e(i). The conjecture thus simply states that E(p = π) =
∑

i e(i)g
2i.

2.1 Twist-L and analytical continuations

Considering now that p = π is the smallest non-zero momentum that a magnon can have

on a chain of length L = 2 it is tempting to speculate that a general expression for the

anomalous dimension of twist-L operators at N = 1 could be

γL(1) = E

(

p =
2π

L

)

. (2.15)

At a first glance it would however seem that the above conjecture for arbitrary twist-L fails

for twist-three. In [8, 11] the twist-three anomalous dimensions up to four-loops are given in

terms of harmonic sums. These expressions, as opposed to the twist-two formulae, have two

distinctive features. Firstly, the harmonic sums only have positive indeces, and secondly

they are evaluated at N/2. Naively this last property would invalidate the conjecture. For

example, the one-loop expression is

γ3,1(N) = 4S1

(

N

2

)

, (2.16)

which gives γ3,1(1) = 8(1 − log 2), in obvious conflict with (2.15). However, as mentioned

in [8, 11], the twist-three expressions have been derived for physical, even values of N ,

and do not therefore need to be valid for unphysical, odd values of N . In fact, there is

an important subtlety in the evaluation of γL(N) at unphysical values of N related to

the two different prescriptions that exist in QCD for analytically continuing the harmonic

sums entering the expansions of γL(N) to generic values of the Mellin moment N . As

discussed in [12], there is a unique way to analytically continue sums with positive indeces.

Sums with a negative index, however, such as S−a,b,..., have, due to their definition as

an alternating series, a (−1)N factor. The oscillatory nature of this factor would, after

analytical continuation, make the sums explode exponentially along the imaginary N axis,

and the inverse Mellin transforms would thus be ill-defined. Instead, if one chooses to

analytically continue solely from even (or odd) values of N , the (−1)N factor can be set

to a constant +1 (or −1), and well-behaved analytical continuations are obtained. The

harmonic sums obtained by continuing from even N are denoted S(+) (together with the

corresponding indeces) and the sums obtained from negative values of N are written S(−).

It should be stressed that S(+) (respectively S(−)) give incorrect values for odd (even)

integer N . The two prescriptions then define two analytic expressions for the anomalous

dimensions, γ(+)(N) and γ(−)(N).

– 4 –
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In QCD, both the positive and negative expressions are present, in the form of the

singlet and non-singlet anomalous dimensions (see for instance [13] for a recent discussion).

In N = 4 supersymmetric Yang-Mills, however, physical states always correspond to even

moments, and the (+) prescription is therefore singled out. For example, in [8] it was the

(+) prescription that was used to analytically continue the twist-two anomalous dimension

obtained from the ABA to N = −1, where its singular behavior could be compared to the

predictions from BFKL on the leading singularity. At a pole, the singular behavior of the

two prescriptions, differ in sign. For example, near ω → 0,

S
(+)
−a (N + ω) ∼ (−1)N+1

ωa
, N = −1, −2, . . . , (2.17)

while

S
(−)
−a (N + ω) ∼ (−1)N

ωa
, N = −1, −2, . . . (2.18)

The twist-three expressions show no oscillatory behavior, and since they are extracted

for even N , they may well be giving only the (+) analytic continuation. It could then be

argued that the twist-three dimension is written in terms of sums with positive indeces, for

which the two prescriptions give the same result. However, the formulae in terms of positive

indeces could very well be an effective description only valid for even N . In contrast, in

order to obtain the correct dispersion relation for twist-two, the (−) prescription has to be

used, since we are evaluating the harmonic sums at an odd value of N . We believe that in

general, it is the (−) prescription that should be used to test (2.15).

3. DGLAP and BFKL

The Regge limit of high energy QCD corresponds to the scattering of two hadrons with the

center of mass energy s much larger that the typical transverse scales, Q2 and Q′2. When

Q2 and Q′2 are much larger than the QCD scale we can work in perturbation theory. In DIS

Q2 ≫ Q′2, with Q2 the virtuality of the photon and Q′2 the transversal scale of the target

hadron. In this limit, the leading contribution to the evolution in Q2 of the unintegrated

parton distribution function f(x, Q2), which is related to the integrated parton distribution

function F (x, Q2) through

F (x, Q2) =

∫

dk2f(x, k2)Θ(Q2 − k2) , (3.1)

is determined by the Bethe-Salpeter integral equation

f(x, Q2) = f0(x, Q
2) + 2g2

∫ 1

x

dz

z

∫ Q2

Q′2

dk2

Q2
f

(

x

z
, k2

)

, (3.2)

shown pictorially in figure 1. The Bethe-Salpeter equation takes this form for a kinematic

region where we have, not only x ≪ 1 and z ≪ 1 corresponding to the Regge limit, but

strict ordering in the longitudinal momenta, z ≫ x, and also an ordering Q2 ≫ k2 along

the transversal momenta. For example, the assumption z ≪ 1 implies that only the 1/x

– 5 –
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Q2 Q2

Q′2Q′2

k2

= +

Figure 1: The Bethe-Salpeter equation, performing the resummation of the logarithmic contribu-

tions to the evolution of the parton distribution functions in Q2.

part of the gluon splitting function will be relevant, giving the 1/z factor in the integration

kernel.

Iterating the integral equation produces a sequence of ladder diagrams where the order-

ing in the transverse momenta leads to logarithms in the energy, log
(

s
Q2

)

= log
(

1
x

)

, while

the strict ordering of the transversal momenta produces the logarithmic collinear enhance-

ment factors log
(

Q2

Q′2

)

. Thus the previous Bethe-Salpeter integral equation is performing

the perturbative resummation of double logarithms of the form

(

g2 log

(

1

x

)

log

(

Q2

Q′2

))n

. (3.3)

Taking the Mellin transform with respect to both x and Q2,3

f(x, Q2) =

∫

dω

2πi
x−ω

∫

dγ

2πi

1

Q2

(

Q2

Q′2

)−γ/2

f(ω, γ) , (3.4)

the solution to the Bethe-Salpeter integral equation is given by

f(ω, γ) =
ωf0(ω, γ)

ω + 4g2 1
γ

, (3.5)

which leads to

f(x, Q2) ∼ exp

(
√

8g2 log

(

1

x

)

log

(

Q2

Q′2

)

)

, (3.6)

corresponding to the resummation of the double logs (3.3). In this collinear limit the

DGLAP kernel in Mellin space is simply given by −2/γ.

In contrast with the evolution in Q2 that DGLAP gives, the BFKL equation provides

us, in its domain of validity, with the behavior of unintegrated parton distribution functions

under changes of x [14]. The kinematical regime where BFKL is defined corresponds to

3If DGLAP conventions were used, the exponent of the
“

Q2

Q′2

”

-factor would simply be denoted γ. How-

ever, as later in this note we will relate γ to the anomalous dimension, which we treat using spin chain

conventions, the −γ/2 factor appears.

– 6 –
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scattering of two hadronic objects with transversal scales of the same order. In these

conditions we cannot impose strict ordering on the transversal momenta in the ladder

diagrams, and we have resummations of single logarithms of type
(

g2 log
(

1
x

))n
. To a

large extent, however, the full leading logarithmic (LLA) BFKL solution is reproduced by

requiring that it gives the DIS −2/γ pole in the limit γ → 0, and by imposing symmetry

under the exchange of the scales Q and Q′. From (3.4) we see that, for fixed x, this

corresponds to requiring invariance under −2/γ → (1 + γ/2), which gives the pole

1

ω − 2g2
(

− 2
γ + 1

1+γ/2

) . (3.7)

At this is stage it is not clear how close (3.7) comes to the full BFKL answer, but a complete

analysis shows that the equation is only corrected slightly in the region in between the two

poles, giving the LLA BFKL pole

1

ω − 2g2χLLA(γ)
, (3.8)

where

χLLA(γ) = 2ψ(1) − ψ
(

−γ
2

)

− ψ
(

1 +
γ

2

)

(3.9)

is called the BFKL kernel. Notice that when γ → 0 the kernel χLLA(γ) ∼ −2/γ, in

agreement with the DIS result.

3.1 NLLA and scale dependence

In DIS the relevant scale s0, relating x and s through x = s0/s, is the photon virtuality Q2.

At LLA we do not have dependence on the scale s0, but this situation changes when we go

to next to leading logarithm approximation (NLLA) [15]. In particular if we are working in

the BFKL regime the natural scale is the symmetric choice s0 = QQ′. As mentioned above,

in the DIS regime we get contributions of the form
(

g2 log
(

s
Q2

)

log
(

Q2

Q′2

))n
. Shifting to

the symmetric scale s0 = QQ′ these lead to contributions with more collinear logarithms

log
(

Q2

Q′2

)

than powers of g2, producing non-physical singularities in the γ → 0 limit such

as g4/γ3. Also, from the renormalization group equations it follows immediately that there

can not be more powers of logQ2 than powers of the coupling g2. These double collinear

logarithms, where the term “double” refers to the appearance of two logarithms for each

power of the coupling, should therefore be canceled by higher order corrections to the

BFKL kernel. The most straightforward way to subtract them is by introducing ω into the

arguments of the digamma functions in the LLA BFKL kernel (see for instance [16], and

references therein),

χLLA(γ) → 2ψ(1) − ψ
(

−γ
2

+
ω

2

)

− ψ
(

1 +
γ

2
+
ω

2

)

. (3.10)

This shifted kernel coincides with the LLA kernel at lowest order, since ω starts at order

g2, and it resums large parts of the higher order contributions.

– 7 –
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The shift in the digamma functions can be easily understood in terms of scale transfor-

mations of the Mellin transform. Writing out the scale s0, the inverse Mellin transform (3.4)

is given by

f(x, Q2) =

∫

dω

2πi

(

s

s0

)ω ∫ dγ

2πi

1

Q2

(

Q2

Q′2

)−γ/2

f(ω, γ) . (3.11)

It follows that a change of scale s0 → s0
Q′

Q corresponds to the shift −γ/2 → −γ/2 + ω/2.

In DIS we have a −2/γ pole for small γ, when the scale is Q2. This implies that the

first non-constant digamma of the characteristic function should be −ψ(−γ/2) at s0 = Q2,

which implies that it shifts to −ψ(−γ/2+ω/2) at s0 = QQ′. Requiring symmetry between

Q and Q′, and therefore a 1/(1 + γ/2) pole when s0 = Q′2, provides the argument of the

last digamma function.

Now let us recall that the DGLAP anomalous dimensions and their equivalent de-

scription in terms of dimensions of twist-two operators arise when studying the parton

distribution functions in DIS. When comparing BFKL predictions with the anomalous di-

mensions obtained from the spin chain picture, we should therefore choose the asymmetric

Q2 scale. With that choice we get

χ(ω, γ) = 2ψ(1) − ψ
(

−γ
2

)

− ψ
(

1 +
γ

2
+ ω

)

. (3.12)

3.2 The double logarithmic resummation

In what follows we will be interested not only in double logarithms of the type (3.3), but also

in non-collinear double logarithms, i. e., in contributions to the parton evolution where each

power of the coupling g2 is accompanied by two powers of log s, or mixed logarithms, where

both logQ2 and log s terms appear. Contrary to the case of the purely collinear double

logarithms discussed in the previous subsection, which must be compensated for at higher

orders in the perturbative expansion in order to satisfy the renormalization group equations,

this is not necessarily the case for these non-collinear, or mixed, double logarithms. In fact,

they turn to provide an important contribution to higher perturbative orders.

A suggestion to resum the entire double logarithmic contribution to the parton evo-

lution, relying on a similar analysis performed in [17], including both
(

log s logQ2
)

and
(

log2 s
)

terms, is to modify the Bethe-Salpeter integral equation (3.2) by changing the

kinematic region over which one integrates [18]. We still require that z ≫ x, or equivalently

s ≫ s′, where s′ = Q2

z , but we now relax the ordering of the transverse momenta, moving

in the direction of BFKL, allowing k2 to be larger than Q2, although still much smaller

than s or s′. Instead, we require that4

z ≪ Q2

k2
, (3.13)

which is automatically satisfied if k2 < Q2 since z ≪ 1, but becomes important in the

extended kinematic region where k2 ≫ Q2. This additional condition mixes the transverse

4The equation studied in [18] corresponded to a QED scattering amplitude, with a slightly different

structure than the case at hand, implying that the modification of the integration region performed was

different than this one.

– 8 –
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and longitudinal variables. As a result, collinear logQ2 logarithms can get substituted

for additional logarithms in the energy. The way the double logarithmic contributions are

generated from this change of kinematical region is shown in detail in appendix A.

At the level of the Bethe-Salpeter kernel, the change of the integration region leads to

a modification of the Mellin space kernel from −2/γ to

−2

γ
+

1

ω + γ/2
. (3.14)

From this modified kernel we see that the pole

ω = 2g2

(

−2

γ
+

1

ω + γ/2

)

(3.15)

in the solution to the Bethe-Salpeter equation in Mellin space can be written5

γ = ω

√

1 − 8g2

ω2
− ω . (3.16)

3.3 BFKL anomalous dimensions: analytic continuation

In BFKL anomalous dimensions arise in a different way than for DGLAP. The solutions

to the BFKL equation can be related to a four-point Green function of fields defined

in impact parameter space. When the impact parameters of two of the fields get close,

one can perform an operator product expansion where the anomalous dimensions of the

appearing operators are given by the BFKL kernel. One of the labels parameterizing the

eigenfunctions of the BFKL equation is the conformal spin n. When n = 0, the double

logarithm corrected BFKL kernel is given by (3.12). But in general, the BFKL anomalous

dimensions depend on n, γ = γ(ω, n), and are given as solutions of

ω = 2g2

(

2ψ(1) − ψ
(

−γ
2

)

− ψ
(

1 +
γ

2
+ ω + |n|

)

)

. (3.17)

For N = 4 Yang-Mills it was suggested in [18] that by an analytic extension in |n| we can get

directly from BFKL the anomalous dimension of formal twist-two operators with negative

spin. Defining j = 1 + |n| + ω, we are interested in moving in the (ω, |n|) plane to points

with |n| = −r− 1, where r is a positive integer, and with ω going to zero as −(r+ 1+ |n|).
Next, we should compare this double limit of γ(ω, |n|) with the analytic extension of the

DGLAP anomalous dimensions for twist-two operators, γ2(N), analytically continued to

γ(−r + ω) for ω → 0.

When we consider the analytic extension of DGLAP anomalous dimensions beyond

one-loop we find terms of type ai, rg
2i/ω2i−1, that for i > 1 contain one more power

of g than powers of ω. These are precisely of the form obtained when expanding the

expression (3.16) for the double logarithm pole. The analytic extension of the anomalous

dimensions thus contains a piece

γ(−r + ω) =
∑

i

ai, r

ω2i−1
g2i + · · · (3.18)

5This is one of the two poles in γ. However, as noted in the appendix, the integration contour performed

when taking the inverse Mellin transform only picks up one of the poles.
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which, invoking the relation to DIS, via BFKL, can be traced to the double logarithm

contribution.

Using the known perturbative results until four-loops (or three-loops if the ABA re-

sult is not trusted), one discovers the following relation between the double logarithm

coefficients ai, r and the coefficients of the loop expansion of γ(1) =
∑

i eig
2i at twist-two,

ai, r = (−1)iei , (3.19)

for even values of r. For odd values of r we get a2 = a3 = 0, which correspond to the

typical behaviour of the BFKL pomeron. Assuming the previous relation holds to all-loops

we observe that the contribution of the double logarithms to the anomalous dimension

analytically extended to negative values of the spin for r even is completely linked to the

anomalous dimension γ(1).

The double logarithm contribution can also be extracted, as is done in [18], directly

from the BFKL kernel. Approximating (3.17) by only keeping the singular parts of the

poles at γ = 0 and γ = −2ω one gets

ω = 2g2

(

−2

γ
+

1

ω + γ/2

)

, (3.20)

which simplifies to (3.16). There is a subtlety in this derivation, however. For fixed

coupling, when ω → 0, the γ does not approach one of the poles, invalidating the pole

approximation.6 This can be seen from equation (3.16) since it implies that γ approaches

an imaginary constant when ω tends to zero. The solution is to let g2 ≪ ω. The expression

for the double logarithmic pole is thus obtained from BFKL when ω is small, and the

coupling is even smaller.

3.4 Magnon dispersion relation and double logarithms

As discussed above the spin chain representation of the anomalous dimensions suggests

to interpret γ(1) as the energy for a magnon with the minimal non-vanishing momentum

in a chain of length-two with periodic boundary conditions. This interpretation of γ(1),

together with (3.19), leads to

γ(DL)(−r + ω) = ωE

(

p = π, g → ig

ω

)

, (3.21)

where by γ(DL) we mean the double logarithm contribution to the anomalous dimension

and where, as before, we assume r even. Once we have related the double logarithm

contribution to the magnon energy, we can use the information about its contribution in

DGLAP to determine at all-loops the form of the magnon dispersion relation, E(ig/ω).

The logic flow of the discussion here is first to interpret γ(1) as the single magnon energy,

secondly to relate γ(1) with the double logarithm contribution and finally to get the form

of the magnon energy from the DGLAP kernel including the double logarithm pieces. As

6For |n| = −1, there is actually a solution of (3.17) where γ approaches 0 as ω does. However, this

solution γ(ω) does not seem to be related to the double logarithms.

– 10 –
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Spin chain BFKL

Magnon Partial wave in double logarithmic approximation

E Partial wave amplitude (re-scaled)

sin
(p

2

)

i/ω

g g

Table 1: BFKL description of the spin chain magnon.

discussed above, the double logarithm contribution to γ is given by (3.16), and therefore

we get

E

(

p = π, g → ig

ω

)

= ω

√

1 − 8g2

ω2
− ω , (3.22)

in agreement with the ABA prescription.

In addition, this agreement gives added weight to the currently used form of the N = 4

dispersion relation. The algebraic construction of the ABA [19] introduces a dispersion

relation of the form (2.11). However, there is nothing that prevents the algebraically

introduced coupling constant from being an arbitrary function of the physical coupling g.7

In extracting the dispersion relation from the double logarithmic approximation of

BFKL we did not assume that the magnon itself had an interpretation in this formalism.

However, we believe that there is a BFKL magnon candidate. The solution to the Bethe-

Salpeter equation corresponding to the double logarithmic approximation can be related

to a certain t-channel partial wave expansion (see appendix D in [18]). The amplitude for

such a partial wave is given by (equation (D2) in [18])

fω =
ω2

4g2

(

1 −
√

1 − 8g2

ω2

)

. (3.23)

We can therefore speculate that the relation between the spin chain magnon and BFKL

is as presented in table 1. A single magnon is thus identified with a partial-wave in the

double logarithmic approximation. Including subleading terms in the integral equation

would then correspond to adding interactions between magnons.

In fact, this relationship is entirely analogous to the approach in [2] linking high energy

QCD and the XXXs=0 spin chain. Eigenfunctions of the Bethe-Salpeter kernel, which

amount to partial waves in that case, where mapped to magnons of the spin chain, and

the spin chain hamiltonian was obtained. The spin 0 construction is, however, limited to

leading order. Here we have possibly the starting point for a map from all-order BFKL to

a spin chain. However, obtaining the explicit map may be difficult, because it would entail

constructing the complete all-loop dilatation operator, including wrapping effects. Still, a

partial map could shed light on both BFKL and the N = 4 spin chain.

7To our knowledge, the only existing all-loop calculations of the dispersion relation are based on the

AdS/CFT correspondence, or require, as in the algebraic construction in [19], an ad hoc identification of the

’t Hooft coupling constant and the algebraically introduced coupling. For an example of how there can be

a non-trivial relation between the algebraic and the physical coupling see for instance the recent proposal

in [20].
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4. Conclusions

In this note we have put forth a series of conjectures, based on perturbative evidence, on the

relation of the dispersion relation for planar N = 4 Yang-Mills to the double logarithmic

contributions to the anomalous dimension for twist-two operators. Let us briefly recall

them: 1. The first conjecture relates the perturbative coefficients ei in the coupling for the

anomalous dimension of twist-two operators, γ2(N), at N = 1, to the coefficients for the

double logarithm contributions to γ2(N) atN = −r, for even values of r. We have presented

evidence that ei = (−1)iai,r. 2. Secondly, we have suggested that the anomalous dimension

γ2(1), evaluated using the (−) analytic extension for the harmonic sums, corresponds to

the dispersion relation for a single magnon of momentum p = π, γ2(1) = E(p = π). 3.

Our last statement is an extension to twist-L operators, γL(1) = E(p = π/L), whenever

the (−) analytic extension is defined.

The first conjecture is on firmest footing since it seems that there is some principle

restricting the possible harmonic sums which enter the perturbative expansions of the

anomalous dimensions, so that their evaluations atN = 1 and at negative, even integers, are

indeed related. Furthermore, only the double logarithm contribution is matched to γ2(1).

That is, terms that are subleading in either the coupling, or in 1/ω, in the expansion of the

anomalous dimensions around −r, for r even, do not enter in the anomalous dimension at

N = 1. This is a highly non-trivial statement, since at N = 1 all harmonic sums contribute

to the anomalous dimension, while only the most singular sums contribute to the double

logarithm expansion. Notably, nested harmonic sums typically do not affect the double

logarithms.

One might then wonder whether wrapping effects could spoil the validity of the first

two conjectures. Wrapping is understood as responsible for the mismatch for twist-two

operators between the ABA and BFKL at four-loops [8]. From the viewpoint of BFKL,

wrapping is never an issue and must automatically be included in the BFKL answer.

Since the double logarithmic contribution is, at weak-coupling and at all-loops, determined

by equation (3.16), and one could in principle derive also γ2(1) to all orders solely from

BFKL [18], there is no reason to believe that something special will happen at fourth loop

order that ruins conjecture 1. If one then invokes the intuitive idea of γ2(1) giving the

energy of a single magnon as justification for the second conjecture, one is lead to the

conclusion that wrapping effects should not modify the single magnon dispersion relation

at weak-coupling (strong-coupling is, of course, an entirely different issue). Most likely,

before including wrapping effects, the ABA answer should be consistent with the relation

γ2(1) = E(p = π), implying that wrapping modifications to the ABA should correspond to

combinations of harmonic sums respecting transcendentality, and vanishing when evaluated

at N = 1. This is in fact the case for the ad hoc proposal in [8]. However an important

problem that we have not considered in this note is if a potential extension of BFKL

to strong ’t Hooft coupling (see for instance [21]) would modify the form of the double

logarithmic contribution.

The third conjecture, by contrast, is merely a wild idea based on the intuitive notion

underlying the second conjecture. It could very well be that it is only valid at even L, or

– 12 –
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that the relevant magnon momentum is not the minimal 2π/L, but something else.

We have also, by analogy with the emergence of one-loop integrability in high energy

QCD, conjectured that the all-loop magnon appears in BFKL in the form of a partial wave

in the double logarithmic approximation. It would be very interesting if this correspondence

could be extended to a complete BFKL-spin chain map.

As a final comment, let us recall that the magnon dispersion relation for planar N = 4

Yang-Mills is intimately related to the string BMN formula and moreover it can be derived,

barring possible differences between the algebraically introduced coupling and the physi-

cal coupling, from the centrally extended symmetry algebra [19]. It would be extremely

interesting to find glints of these structures in the double logarithmic contributions to the

Bethe-Salpeter equations governing the parton distribution functions. Perhaps one could

use this information to extend the BFKL - spin chain map beyond the single magnon.
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A. The resummation of double logarithms from the integral equation

We will now show how a modification of the kinematic region used in the Bethe-Salpeter

equation

f(x, Q2) = f0(x, Q
2) + 2g2

∫ 1

x

dz

z

∫ Q2

Q′2

dk2

Q2
f
(x

z
, k2

)

, (A.1)

can produce all types of double logarithmic terms that are consistent with renormalization

group constraints, by which we mean that the number of collinear logarithms are not

allowed to exceed the order in perturbation theory. Firstly, we will drop the requirement

of transversal ordering Q2 ≫ k2. This changes the upper integration limit in the integral

over transverse momenta from Q2 to s = Q2

x . Secondly, we add the condition that

z ≪ Q2

k2
, (A.2)

which is not trivially satisfied when k2 > Q2. This causes the upper limit of the integral

over z to become the smaller of 1 or Q2

k2 . Therefore (A.1) is modified to

f(x, Q2) = f0(x, Q
2) + 2g2

∫ Q2/x

Q′2

dk2

Q2

∫ min(1, Q2/k2)

x

dz

z
f
(x

z
, k2

)

. (A.3)

For the two different cases present in the integration limit min
(

1, Q2

k2

)

, the integration

over transverse momenta comes from different regions (k2 > Q2 or k2 < Q2, respectively)
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and we get

f(x, Q2) = f0(x, Q
2) + 2g2

∫ Q2

Q′2

dk2

Q2

∫ 1

x

dz

z
f
(x

z
, k2

)

+2g2

∫ Q2/x

Q′2

dk2

Q2

∫ Q2/k2

x

dz

z
f
(x

z
, k2

)

. (A.4)

By iteration this equation produces the perturbative expansion of the double logarithmic

terms. For example, with the simplest possible initial distribution f0(xQ
2) = 1

Q2 , where the

factor 1/Q2 has to appear since the integrated parton distribution should be dimensionless,

one obtains

f(x, Q2) =
1

Q2
+

2g2

Q2

(

log
Q2

Q′2
log

1

x
+

1

2
log2 1

x

)

+

+
4g4

Q2

(

1

4
log2 Q

2

Q′2
log2 1

x
+

1

3
log

Q2

Q′2
log3 1

x
+

1

12
log4 1

x

)

+ O(g6) . (A.5)

Iteration of the first integral in (A.4), which is the same integral as in (A.1), produces

double logarithms of the form
(

g2 log Q2

Q′2 log 1
x

)n
, while iteration of the second integral

produces double logarithms in the energy
(

g2 log2 1
x

)n
. Combining the two terms when

iterating leads to mixed cases.

However, usually one introduces (A.4) because the double logarithmic contribution

makes the perturbation expansion badly divergent, such as is the case when the energy

is so large that g2 log2 s
Q2 is of order unity or larger. Solving the integral equation pro-

vides a resummation to all orders of the double logarithms. This can be done by Mellin

transforming the distributions,

f(x, Q2) =

∫ σ+i∞

σ−i∞

dω

2πi
x−ω

∫ σ′+i∞

σ′−i∞

dγ

2πi

1

Q2

(

Q2

Q′2

)γ

f(ω, γ) , (A.6)

where the integration contour for the γ integral runs parallel to the imaginary axis with a

positive real part, σ′ > 0, and the ω integration contour is also parallel to the imaginary

axis with σ − σ′ > 0. As they are much more convenient in performing the following

calculations, we are using DGLAP conventions in this appendix for γ as opposed to the

spin chain conventions used in the main text. The results obtained can be translated to

the spin chain conventions by simply letting

γ → −γ
2
. (A.7)

If one introduces (A.6) into (A.4), and performs the integrals over z and k2, the first

integral becomes f(ω, γ)/ωγ, while the second integral transforms to f(ω, γ)/ω(ω − γ),

which gives the double logarithmic pole

f(ω, γ) ∼ 1

ω − 2g2
[

1
γ + 1

ω−γ

] . (A.8)
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The double Mellin transform is full of subtleties, however, and the correct answer is not

obtained simply by introducing (A.6) into (A.4). In appendix D of [18] an alternative

method is used to pass to Mellin space when solving a similar integral equation. For the

simple initial distribution f0(x, Q
2) = 1/Q2 one obtains

f(ω, γ) =
(ω − 2γ)γω(2g2)−2

ω − 2g2
[

1
γ + 1

ω−γ

] . (A.9)

One can now transform back to the physical variables x and Q2 by performing the integrals

in (A.6). We can re-write (A.9) as

f(ω, γ) =
(ω − 2γ)(γ − ω)γ2(2g2)−2

γ2 − ωγ + λ

=
(ω − 2γ)(γ − ω)γ2(2g2)−2

(

γ − 1
2

(

ω +
√

ω2 − 8g2
))(

γ − 1
2

(

ω −
√

ω2 − 8g2
)) . (A.10)

Now, performing the integral over γ we will only pick up the pole at

γ =
1

2

(

ω −
√

ω2 − 8g2
)

, (A.11)

since the two poles lie on either side of the γ contour, and
(

Q2

Q′2

)

> 1 implies that we must

close the contour towards the left.

After having performed the γ integral we are left with

Q2f(x, Q2) =

=

∫

dω

2πi
x−ω

√

ω2 − 8g2
(

ω +
√

ω2 − 8g2
)(

ω
2 − 1

2

√

ω2 − 8g2
)2

8g4
√

ω2 − 8g2

(

Q2

Q′2

)

1

2

“

ω−
√

ω2−8g2

”

=

∫

dω

2πi
x−ω 1

4g2

(

1 −
√

1 − 8g2

ω2

)

exp

[

ω

2

(

1 −
√

1 − 8g2

ω2

)

log
Q2

Q′2

]

. (A.12)

This integral can be evaluated, for example by performing a saddle point approximation.

Instead, let us simply note how the perturbative expansion of this expression consists only of

double logarithms. The inverse Mellin transform of 1/ωr+1 is
(

1
r! logr 1

x

)

, and each instance

of the coupling g2 is accompanied by either 1/ω2 or by
(

1
ω log Q2

Q′2

)

, explaining the double

logarithms. Also, at most one factor of log
(

Q2

Q′2

)

can appear at each order in perturbation

theory, which must be the case in order for the double logarithmic approximation to be

compatible with the renormalization group equations.
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